
Using Elliptic Curve Cryptography (ECC)
for Enhanced Embedded Security
Financial Advantages of ECC over RSA or Diffie-Hellman (DH)

Part of The Certicom ‘Catch the Curve’ White Paper Series
November 2004

Jerry Krasner, Ph. D, MBA
Embedded Market Forecasters
American Technology International Inc.

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY2

The Catch the Curve White Paper Series
When your cryptography is riding on a curve, it better be
an elliptic curve.

Are you riding a crypto roller coaster? Does your ride involve adding strong security to constrained

devices? Are you faced with the tradeoff between product differentiation and profit margins? If so,

find out about ECC, the next generation public-key cryptosystem.

ECC provides you with:

• longer running battery operated devices that produce less heat

• software applications that run faster and take up less memory

• scalable cryptography for the future

Read the Catch the Curve white paper series to find out why the NSA, Research in Motion,

Motorola and other leading organizations have adopted ECC.

The series in detail:

The Certicom Catch the Curve white paper series includes three white papers detailing various

areas of ECC.

• White paper 1 provides the foundation for understanding ECC, its strengths and

advantages.

• White paper 2 provides real-world examples of ECC applications, discussing how

organizations are using, and benefiting from ECC today.

• This final white paper includes an analysis on the financial advantages of ECC over

RSA or Diffie-Hellman. It is written by an independent analyst from Embedded Market

Forecasters.

For more information on the white paper series, Certicom or our products, please contact Wendy

Bissonnette at +1.613.254.9258 or wbissonnette@certicom.com.

www.certicom.com/catchthecurve

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY3

Executive Summary

Embedded security is the next important product differentiator that can greatly expand markets

for embedded vendors, and create the need for new products for embedded developers.

Implementing security protocols in embedded systems is not an easy proposition and systems

are often delivered that, for reasons of complexity, limited resources, or implementation, fail

to deliver required levels of security. Embedded systems are so frequently limited by memory,

microprocessor performance (or required number of gates) and by power drain, that lower levels of

security are installed than required to protect the information.

The need for security in embedded applications is easily stated but difficult to apply. There is a real

cost to implementing embedded security and there are alternative security methodologies that can

be used to enable adequate security while minimizing development cost and product degradation.

Comparative costs derive from the requirements of different security implementations for memory,

processor speed/gates, power drain, and bandwidth.

Twenty years ago the state-of-the-art in processor technology permitted 33 million instructions

per second – today that figure is 4500 times higher. Hence what was considered an unbreakable

encryption algorithm in 1984 is now declared useless today. In the realm of symmetric key

cryptography, DES’ 56 bit key is now history; it does not offer adequate security given the

resources available to do brute force attacks — attacks which check every possible key. It is for this

reason that the standard, which once defined DES as the appropriate symmetric algorithm to use

for the encryption of sensitive information within the U.S. government, has been declared obsolete.

Now the Federal Information Processing Standard (FIPS) 197 specifies the recently developed AES

algorithm, whose keys can offer 128, 192 or 256 bits of security.

AES is such a powerful encryption algorithm that it is estimated that if it took only one second for

a computer system to crack DES, it would comparably take the same machine 150 trillion years to

break a 128 bit AES algorithm! Notwithstanding this extremely high level of encryption, AES also

offers improved performance.

However, that’s only part of the security equation. In order to provide the level of embedded security

offered by AES, it is necessary to provide an equal level of asymmetric encryption. Only ECC can

provide the required public key security strength with a small key size. In this paper the reader will

become familiar with Elliptic Curve Cryptography (ECC) and how it provides higher levels of security

while reducing required memory, processing power, power drain and required bandwidth.

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY4

The purpose of this paper is actually threefold; to acquaint embedded developers and vendors

to the market opportunities that embedded security provides; to explain the need for public/

private key cryptography; and to present ECC as a design solution for cost savings and product

enhancement.

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY5

I. The Emergence of Embedded Security

Overview
Technology guru Michael Murphy describes the three-waves of technology growth for

semiconductors. The First Wave occurred in the mid 70’s and was driven by mainframe computers;

the Second Wave occurred in the mid 80’s and was driven by the PC revolution; the Third Wave

occurred in the 90’s and was driven by the Internet explosion (not to be confused with the dot-

com sector). Each Wave generated a 500% growth over the preceding Wave. Murphy, along with

embedded market researchers (e.g., Embedded Market Forecasters – EMF), have expressed the

view that we are at the onset of the Fourth Wave – Murphy calls it “Universal Connectivity”, EMF

calls it “Communications & Connectivity”.

The technology is at hand to provide the bandwidth and software for an “electronic skin” that

promises to change the way business is conducted. Manufacturers will be connected to their

devices to offer better service; every printer, elevator, air conditioner, vending machine, etc.,

can report its status, financial receipts and maintenance requirements as they occur. Millions

of workers can connect communications devices through their virtual private network (VPN) to

support sales, CRM and product availability. This ability will only increase as the world moves from

2.5G to 4G wireless technology.

The key to this emerging technology wave is the availability of a reliable, fail safe, inexpensive and

secure connectivity technology for embedded applications.

Unlike their larger, higher-powered cousins that are found in server bays, telecom racks and in

industrial automation, embedded devices are largely RAM and middleware limited, memory and

processor constrained and power restricted. The security requirements for this huge base of

connected devices are unique and must be addressed in a different manner. As you read on you

will discover why Elliptic Curve Cryptography is essential for embedded security.

Embedded security is the next product differentiator for embedded devices. The unusual

design constraints placed on embedded devices require a new, highly efficient, easy to deploy

cryptography scheme that provides high levels of security while minimizing memory, execution

speed requirements and power requirements.

ECC is an essential methodology for meeting these requirements of embedded designs.

The key to this emerging

technology wave is the

availability of a reliable,

fail safe, inexpensive

and secure connectivity

technology for

embedded applications.

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY6

Embedded Encryption (or lack of)
The confidentiality and integrity of sensitive information is a critical component of any secure

system. Typically, this protection is implemented at least in part through the use of symmetric

algorithms, like DES, AES, or countless others.

Unfortunately, many networked embedded systems lack robust encryption to protect sensitive

information. This may be due to resource limitations (strong encryption requires substantial

processing, memory, and power), cost restrictions, design limitations, or possibly the extension

of an internal, legacy, or hard-wired system onto an open network such as Ethernet or Intellectual

Property, without considering the associated security implications.

Regardless of the reason, the potentially disastrous results are the same. Intruders or malicious

insiders can read, intercept, modify, or remove communications at will. If proprietary wireless RF

links are involved, the danger is further amplified, as anyone with suitable equipment can attack

the system, potentially from a substantial distance given a high-gain antenna.

In many cases, damage resulting from eavesdropping on sensitive information pales in comparison

to damage resulting from forged or modified communication. Consider a gas pipeline monitoring

system, which uses wireless RF links between sensor nodes along a gas pipeline, which monitor

and report on line pressure, temperature, purity, and other critical data. If the system lacks strong

security, an attacker could easily damage or destroy the sensors at a vulnerable point on the

pipeline, then substitute his own device which generates false sensor data, while the attacker

damages the pipeline. Alternatively, the attacker could generate false readings indicative of a leak

or fire, diverting maintenance and response personnel from the intended point of attack.

Clearly, insufficient cryptographic protection can lead to substantial compromises, many of which are

not immediately obvious at system design time. A prudent embedded system designer must consider

the implications of intercepted, deleted, modified, and forged information from all components of a

networked system, and take steps to provide encryption to protect against such attacks.

Defining the Marketplace
We are entering an age of unlimited bandwidth and enhanced connectivity. Security will be a

necessity of all embedded systems that employ connectivity of any sort. Hackers have not yet

focused on embedded systems (traffic lights, power plants, industrial controls) but the chances of

such as we move into a new age of connected devices is a virtual certainty.

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY7

The service industry will take on new dimensions as connected devices become pervasive. Home

appliances that can be remotely monitored or investigated will dramatically lower the cost of

service and make such offerings more profitable. Can a manufacturer of refrigerators or microwave

ovens afford to send service people out on warranted service plans without knowing what part or

component is required when their competitors can service these systems remotely? Neighborhoods

could use wireless connectivity to enable the reading of all meters from all homes – provided that

absolute security was built into the connectivity once the transmission reached the wireline.

Point of sale systems depend on dial-up connectivity and fault tolerance combined with security.

The economics of connectivity again dictate the required technological solution. Credit card

processing companies have stated that if they could save one cent per transaction, they would

realize an annual savings (direct to the bottom line) of $70 million.

Embedded systems have grown exponentially over the last decade. They now control every

thing from automobile subsystems to complex medical devices. With the advent of WiFi and

sophisticated networking, more embedded systems are being used to monitor and report data back

in traffic systems, utilities, and medical devices. Embedded devices now control factory automation

systems, nuclear power, and telecommunication systems.

Furthermore, there is an emerging services market for remotely accessing home appliances when

service is required to report either potential or actual problems so that they can be cost effectively

addressed. In addition vendors and utilities are seeking communication methods to lower the cost

of remote reading of electric and gas meters.

All of these systems are subject to failure or potential disruption or compromise from some

external threat. In the case of failure, according to government reports, the data that is lost costs

the economy billions of dollars annually. In the case of purposeful disruption or compromise, the

cost of one single event, as we’ve seen in recent history, can be measured in significant lose of

human life and billions of dollars.

Security Considerations for Embedded Applications
Embedded systems are responsible for the availability and functionality of many critical systems,

from factory automation to gas pipeline monitors to networking equipment. Unfortunately, the

critical importance of embedded systems is seldom matched with a strong, comprehensive security

infrastructure.

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY8

As a result of the substantial difficulty in the design and implementation of secure protocols, the

consensus among the security community has it that system designers are well advised to use

existing, proven security protocols, from trusted, commercial vendors, rather than develop their

own protocols or implementations.

Building security into embedded devices will require a concerted effort on the part of embedded

software developers, OEM’s building embedded systems, vendors selling them, and customers

purchasing and implementing products. Until information security becomes a strategic technology

for embedded systems developers, their products will continue to be characterized by complacency

and vulnerability.

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY9

II. Public/Private Key Cryptography1 in Embedded
Designs

The complexity of security
The art and science of cryptography is a complex one; so much so that PhD’s in abstract

mathematics with years of experience in cryptography often design encryption systems that are

found to be broken upon peer review. Of the many examples with which broken encryption can be

introduced into a product, consider the widely publicized cryptographic vulnerabilities in WEP, the

security component of the 802.11(b) Wireless Ethernet standard developed by the IEEE.

An equally dangerous (and less obvious) hazard to the security of a system—particularly an

embedded system—is the false sense of security which arises from the use of weak cryptographic

techniques, or worse still, of “scrambling” or encoding techniques which claim to provide ample

security while actually providing very little protection.

AES: The Right Security Level
The National Institute of Standards and Technology (NIST) has published its forecast for adequate

security for the ensuing 30 year period (as presented in the table below). Their recommendations

are predicated on the Advanced Encryption Standard (AES) 128 bit symmetric security and their

forecast for microprocessor capability to break asymmetric encryption.

Based on this information, NIST and the National Security Agency (NSA) have standardized on AES

and have developed their recommendations and requirements for asymmetric encryption based on

the fact that the asymmetric algorithm must match the equivalent security level of the symmetric

algorithm.

In fact, NIST notes in FIPS 140-2: Security Requirements for Cryptographic Modules that

“Compromising the security of the key establishment method (e.g., compromising the security of

the algorithm used for key establishment) shall require at least as many operations as determining

the value of the cryptographic key being transported or agreed upon.” This means that some cases

of weakness are not a result of an incorrect application of strong encryption, but rather from using

weaker and stronger cryptography together.

1 A discussion of how Public/
Private key cryptography works
is presented in the appendix.

minimum bit-security level 80 112 128

protection lifetime of data present-2010 2011-2035 2036 and beyond

source: NIST SP 800-57

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY10

Symmetric and asymmetric cryptosystems
By way of analogy, consider a chain composed of several extremely strong links, and one very weak

one; despite the strength of most of the chain, the single weak link compromises the security of the

entire chain. The strong-as-the-weakest-link axiom is equally applicable to system security, with

the notable difference that weak links are very easy to introduce by accident, and very difficult to

detect. Therefore, all links must be equally secure, or the overall security of the system is less than

the security of the individual links.

As an example, SSL provides a virtual “tunnel” across a network, which can be used to send

information protected from interception and modification. This is accomplished by using two forms

of cryptosystems together: asymmetric and symmetric. The asymmetric cryptosystem is used to

negotiate a common key between the client and the server for use during their communication,

and the symmetric cryptosystem is used to encrypt and decrypt traffic with the negotiated key.

Common asymmetric algorithms include RSA and Diffie-Hellman (DH) while typical symmetric

algorithms are DES and AES.

To continue the analogy from above, the asymmetric system is one link in the security chain,

and the symmetric system is another. If the asymmetric encryption is broken, an attacker can

determine the negotiated common key, and access the traffic using that key, without having to

break the symmetric encryption. Similarly, if the attacker can break the symmetric encryption, he

can access the traffic without breaking the asymmetric encryption. Given this scenario, clearly the

symmetric and asymmetric schemes should be of equal strength.

Unfortunately, as stronger symmetric algorithms like AES have come into common use, the

corresponding asymmetric encryption has not increased in strength to match. As a result, many

systems use 128- or 256-bit AES for symmetric encryption, yet rely on 1024-bit asymmetric

encryption. Thus, these systems have a security level roughly equivalent to a system using 80-bit

keys for symmetric encryption.

While 80 bits is still a substantial level of security, it is not the 128- or 256-bit level that is likely

advertised, and the systems are incurring the additional cost of 128- or 256-bit keys, without any

additional security, which is wasteful of potentially limited resources. This is exactly the situation

that NIST was trying to solve in FIPS 140-2: Security Requirements for Cryptographic Modules when

mandating that the asymmetric algorithm match the symmetric algorithm in terms of security strength.

And though SSL was used in this example due to its near-ubiquity as the protocol of secure

web transactions, the key size disparity is an issue anywhere asymmetric and symmetric

cryptosystems are used together.

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY11

Advantages of ECC for design efficiencies
So now let’s look at what level of public-key cryptography would be required to match the strength

of AES.

A typical 1,024-bit RSA asymmetric key is about as secure as an 80-bit symmetric key, yet AES key

sizes range from 128 bits to 256 bits. To provide security equivalent to AES, RSA public-key sizes

would have to range between 3,072 and 15,000 bits long, which is so big that typical embedded

hardware would be unable to maintain reasonable levels of performance or throughput.

One appealing solution to the key size disparity problem is the promising family of asymmetric

algorithms known as Elliptic Curve Cryptography, or ECC. ECC uses much smaller key sizes than

other asymmetric techniques, while providing equally strong security. Therefore, while a 128-bit

symmetric key would require an RSA or DH key of 3,072 bits in order to provide equal protection. An

ECC key of 256 bits would provide just as much security, at less than 1/12th the size. The benefits

are more substantial for larger key sizes: a 256-bit symmetric key should be protected by a 15,000-bit

RSA or DH asymmetric key, while an equivalent ECC asymmetric key size is only 512 bits.

Due to the difficulty in breaking its encryption, Elliptic Curve Cryptography can provide the same

level of RSA or DH encryption at a greatly reduced bit size. This is very important to embedded

developers and vendors for whom power drain, memory, processor requirements and bandwidth

requirements are limited and of concern. There is an obvious cost savings to the use of ECC—a

topic that we will address in the ensuing sections.

The following table shows the comparative ECC and RSA bit size requirements for five different

symmetric algorithms in order to achieve different bit-security levels.

Bit-security level

ECC size (prime)

ECC size (binary)

RSA modulus size

ECC size

RSA modulus size

Symmetric key algorithm

Hash algorithm

Skipjack

SHA-1

3-DES

SHA-256

AES-128
small

SHA-256

AES-192
medium

SHA-384

AES-256
large

SHA-512

80

192

163

1024

112

224

239

2048

128

256

283

3072

192

384

409

7680

256

512

571

15 360

192

1536

224

4096

256

6000

384

>10 000

512

>20 000

sources: FIPS 186-2. NIST SP 800-57. ANSI X9.30.1 - 2002

source: NESSIE Security Report (2003)
Key Size Comparisons

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY12

ECC offers considerably greater security for a given key size. That smaller key size also makes

possible much more compact implementations for a given level of security, which means faster

cryptographic operations, running on smaller chips or more compact software. This means less

heat production and less power consumption — all of which is of particular advantage in constrained

devices, but of some advantage anywhere. There are also extremely efficient, compact hardware

implementations available for ECC exponentiation operations, offering potential reductions in

implementation footprint even beyond those due to the smaller key length alone.

Since ECC is an appealing solution to the key size disparity problems, embedded implementations

of ECC are now being designed into systems. While several standard security protocol

implementations do support ECC, RSA is more widely deployed. This will surely change as ECC

gains in popularity following the standardization by the NSA.

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY13

III. Financial Advantages of Using
 ECC over RSA

Embedded systems generally are limited by their available resources: battery

power, memory, bandwidth, and processing capacity. For many embedded

designs that require adequate levels of security, the additional memory

required and the CPU time taken make the use of RSA and DH impractical

– if not impossible – for implementation. In other embedded designs, the

additional overhead and associated cost required to implement DH or RSA is

excessive.

Because security is a support function for the real intent of any device, it

should be as unobtrusive and undemanding on the device as possible. As

the previous section illustrated, today’s de-facto standard, RSA, requires

increasingly large key-lengths in order to provide acceptable security.

Continuing to use RSA means that an ever-increasing portion of a device’s

processor must be used for security operations. This is why ECC is a

compelling alternative to RSA or DH for embedded designs. Using ECC

means that an embedded device can:

• use a smaller, cheaper processor or apply more processing to the main

functions of the device;

• in cases where the security operations are integrated into the chipset,

provide gate counts for ECC that are significantly smaller, meaning less

real-estate and lower chip costs;

• apply fewer processor cycles because the device is creating less heat and

therefore less power drain – meaning that battery life is longer;

• require less bandwidth for transactions due to more-efficient protocols

Associated Design Costs for Embedded Systems
This section examines the associated cost factors that embedded developers,

OEMs and vendors should consider when implementing security into their

embedded designs.

THE MATH BEHIND ECC PERFORMANCE

Let’s now turn for a moment to consider the
differential cost of implementing DH versus ECDH
(EC-Diffie-Hellman).

A Diffie-Hellman key agreement consists of two
exponentiations by each party. Often the exponents
are taken to be no longer than 160 bits since this does
not appear to lessen the security. For DH, one makes a
calculation by computing g^e mod p, where e is 160
bits long, consists of 160 modular squarings and 80
(on average) modular multiplications.

In the elliptic curve case, the DH key agreement
consists of two point multiplications by each party.
For the same security level as the DH of length 1024
bits, we require a curve whose prime order subgroup
is around 160 bits long. The upshot of this is that the
elliptic curve computations will be done with 160
bit arithmetic. Now, computing eG, where e is a 160
bit integer, and G is a point on the elliptic curve, we
require 160 point doubles, and 80 (on average) point
additions.

Therefore, to see how much faster an Elliptic Curve
Diffie-Hellman is compared to a Diffie-Hellman, we
compare how long a point double/addition takes
compared to a modular squaring/multiplication.

For an elliptic curve E over a field F {2^m}, the
dominant costs in a point double are two field
multiplications and one field inversion. The cost of
a point-add is roughly the same. On limited power
devices, a field inversion costs about 2.5
field-multiplies. (On machines with caches and
pipelining inversion can cost more, up to 4.5 or more
field multiplies). So for a rough estimate let us say that
a point operation costs us five 160 bit field-multiplies.

Since the complexity of multiplication is quadratic,
(for the sizes we are talking about), doubling the
number of bits means quadrupling the time for a
multiplication. Thus, a 1024 bit multiply takes roughly
(1024/160)^2 = 40 times as long as a 160 bit multiply.
Similarly, a 3076 bit multiply equals 144 times as long
as a 256 bit multiply.

continues…

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY14

Processing Power
In determining the potential operations of any device, chip selection is one

of the main considerations: A more expensive processor allows a device to

do more. Using more efficient methods allows a less expensive processor

to perform the same functions. This is why ECC is so critical to embedded

devices, where processing, size and functionality provide clear trade-offs.

The sidebar describes the mathematics of why ECC is computationally more

efficient.

As an example, a smart card, connectionless key fob or other small device

that is used for a financial transaction must authenticate itself to the reader.

Performing this transaction using ECC takes significantly less processing,

meaning that two benefits are possible:

 1. The transaction will happen more quickly, meaning that the system

can process more transactions and generate more revenue; or

 2. A less expensive (and slower) processor can be used in the smart card to perform the same

transaction in the same amount of time.

Mobile devices such as PDAs and smartphones show similar results. A typical processor for

these types of devices is the ARM SA1110, rated at 206 MHz (tested in an iPAQ). At the 128-

bit-AES-equivalent security level, ECC-256 provides excellent response times; RSA-3072 offers

good response only in signature verification; the times for signature and key generation are

unacceptable. The delay is prohibitive for many – if not most – embedded applications.

Therefore, to offer equivalent security and performance on a device using RSA-based security, you

would need to use a faster processor which would increase the costs of the embedded device.

Since a point operation requires 5 field multiplies, we
expect that a 1024 bit multiply will cost 40/5 = 8 times
as much as a 160 bit multiply. Therefore if modular
squarings cost the same as modular multiplies we can
expect the Elliptic Curve Diffie-Hellman to be 8 times
faster than Diffie-Hellman, since the basic operations
are 8 times faster and we are doing the same number
of basic operations. Sometimes squarings can be a
little faster than modular multiplies, but not more than
twice as fast, and in this case the EC Diffie-Hellman is
still 5 times faster.

We can summarize with a “rule of thumb” that ECDH,
mathematically speaking, is 5-10 times faster than
DH and 5-10 times smaller in terms of bandwidth. In
practice, as we will see ECC-based algorithms can
offer performance improvement that are substantially
higher.

Algorithm
Security Strength 128 bit

RSA – 3072

ECDSA/ECDH – 256p

Crypto Function Response times

Decrypt/Sign
Verify/Encrypt

Sign
Verify

670 ms
18 ms
7 ms

18 ms

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY15

Gate count
As shown, ECC offers improvements in software. However, it can be particularly efficient in

hardware. As computing environments move to trusted environments and hardware-based

implementations of security functions, the benefits of ECC will be increasingly dramatic in

comparison to RSA and DSA. Optimized chip designs have been shown to be as much as 37 times

faster than comparable implementations in software.

This advantage will be seen in both gate counts (which indicate the space taken up on a chip) and

performance in comparison to RSA. As all chip designers know, more gates cost more money. They

are also important as system designers move to put more functions onto a single chip and to build

fully-integrated system-on-a-chip hardware.

As can be seen in the following table, ECC stands out in both performance and hardware

real-estate. Following normal technology trends, the newer technology is smaller by a factor of ten

(3,260 gates against 34,000 gates) when optimized for space, and still shows performance several

times better than its older rival. When optimized for speed, ECC is more than 7 times faster at

current key lengths (2.6 ms against 0.35 ms), and more than 80 times faster when using key

lengths that will be required for future-proof security.

For these reasons, ECC is a clear choice, and an obvious one when implemented in hardware.

Any device that is using RSA is making a significant sacrifice in processing and giving up more

microprocessor real estate than it should.

Battery drain
Because a more efficient implementation requires less processor cycles and less work, less power

is used and less heat generated. This is critical to mobile devices, where the limiting factor to

usage in many cases is the battery life. In addition, the potential for embedded devices improves as

concerns over heat dispersion are alleviated.

Algorithm Optimization Time Gate count

RSA – 1024
ECC – 163

RSA – 1024
ECC – 163

 RSA – 3072
ECC – 283

RSA – 3072
ECC – 283

4.90 ms
0.66 ms

2.60 ms
0.35 ms

184 ms
29 ms

110 ms
1.3 ms

Space-
optimized

Speed-
optimized

Space-
optimized

Speed-
optimized

34,000
3,260

150,000
48,400

 50,000
6,660

189,200
80,100

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY16

Therefore ECC can be seen as part of an overall slimming down of devices, another innovation in

the long running miniaturization of electronics. In comparison to the vacuum tube, the transistor

offered smaller size, less power drain and better operational speed; ECC is to RSA as the transistor

was to the vacuum tube.

Bandwidth and protocols
Using more efficient key agreement methods such as ECMQV further streamlines security in

embedded devices. Bandwidth, which can be at a premium in embedded environments such as

mesh networks, RFID, or specialized networks like air-traffic control, can be used more efficiently

using these protocols. More broadly, any network can be made more efficient by moving to ECMQV

from Diffie-Hellman or another key-agreement method.

For embedded systems, ECMQV has two major benefits beyond its security:

• The computational requirements are non-intensive, meaning that processing (and therefore

power consumption) is kept to a minimum

• Communication overhead is low: Each side sends only one elliptic-curve point to the other. For

ECC-163 (the equivalent of RSA-1024), this is 326 bits, or 41 bytes of payload – effectively two

tiny data packets, acceptable to all but the most bandwidth-challenged systems. In fact, the 326

bits can be reduced to 164 if point compression is used.

Using less bandwidth can also affect transaction time and capacity, meaning that more can be

done in the same amount of time. A voice-over-IP (VoIP) system, in which a softswitch may handle

millions of signaling connections for call setup on a daily basis, and over which the calling parties

may then make secure connections, could clearly benefit from less intensive security protocols.

Implementing these benefits together as an embedded system builds real value. The inherent

computational advantages of ECC, plus its affinity for hardware, make the design choice easy.

Real Benefits for the Real World

Throughout this paper we have focused on embedded systems and the benefits of using ECC for

security. However, we have also alluded to the fact that the reason this security is required is that

these embedded systems are also connected and exchanging information. This section will show

how ECC has significant benefits for both servers and clients.

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY17

Server-side benefits
Using ECC in lieu of RSA, servers are enabled to do more with less – crypto takes less time, less

processing; and a server can handle more connections/transactions. RSA’s defense is to throw

more hardware (and expense) at the problem; ECC instead offers more capacity from the same

server hardware.

Examples of servers for which ECC can offer improved server performance:

 IPSec servers: Secure connections can occur faster, and the number of secure

connections can be larger because the keys are smaller.

• Voice-over-IP gateways which handle secure connections or signaling.

• SSL servers benefit, whether serving connections to clients using mutual

 authentication, or one-way authentication only.

A Sun Microsystems study shows clearly the benefits of using ECC on SSL servers. At equivalent

security levels (RSA-2048/ECC-224), a web server can complete 3.5 times as many secure

connections using ECC as a server using RSA.

Client-side benefits
ECC enables a larger range of clients to access a server; for constrained clients, it is the only

answer; for larger clients, performance is improved.

0 20 40 60 80 100 120 140 160

0.300

0.325

0.350

0.375

0.400

0.425

0.275

0.250

0.225

0.200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

REQUEST PER SECOND

FI
RS

T
RE

SP
O

NS
E

TI
M

E
(s

)

RSA-2048

RSA-1024

ECC-224

ECC-160

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY18

The benefits of ECC in a client are most impressive when a protocol calls for client authentication

(or mutual authentication). This occurs during most modern-day interaction: Identification of a user

or device, and most transactions. Ordinarily, this takes the form of each side issuing a challenge to

the other; the challenges are digitally signed and returned to the other party for verification.

Verification times are fast: Both RSA and ECC return similar values, in most cases only a few

milliseconds. RSA is faster for present-day key lengths; ECC becomes faster as key lengths grow

past RSA-1024/ECC-163.

Signing of a challenge, however, shows a factor-of-ten differential in favor of ECC, even at

RSA-1024. At RSA-2048 and beyond, generating the signature required for authentication becomes

a cumbersome operation.

In the chart below, total transaction times for TLS (SSL) connections are compared for ECC

and RSA at several security strength levels. As can be seen, at today’s key lengths, ECC offers

marginally-better improvement. At key-lengths that are being recommended today (RSA-2048/

ECC-224), the performance disparity becomes wide. At future security grades, transactions

performed using RSA become unusable (and therefore there are no figures available), while ECC

still offers good response times.

RSA
1024

ECC
163

RSA
2048

ECC
224

RSA
3072

ECC
256

Server

Client

180

160

140

120

100

90

80

60

40

20

0

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA vs. TLS_DHE_RSA_WITH_AES_128_CBC_SHA

Platform: Pentium III 930Mhz (Linux)

ms

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY19

Designing for the future

The previous section showed the clear benefits of using ECC technology rather than legacy RSA

technology. And in the real world, these technology benefits offer tangible results – reduced

expenses and increased revenues.

Given the broad range of potential technology solutions manufacturers and developers may adopt

and the variation in business requirements, it is impractical here to detail individual ROI scenarios.

Each system developer will do this based on the nature of its business, the stage of evolution of its

product or service portfolio, and its objectives in implementing security. The two main factors in

product design are how to keep expenses down while providing a saleable product.

Reduced expenses
There are cost savings at each step along the way. As we have seen, servers and gateways that

handle many connections can be implemented more cheaply per connection. For both embedded

clients and high-performance servers, ECC in nearly all cases offers improvements in speed and

memory requirements.

And reducing expenses can mean strong returns. The use of smart cards is one example where

ECC offers clear benefits. One of the main functions and major processor uses of a smart card

is cryptography; smart cards are generally in use because they can be used for secure access,

financial transactions, identification; all of which are security-dominated activities. As RSA

key-lengths move beyond 1024 bits, a math coprocessor, meaning more complexity and more

expense, becomes essential to provide acceptable performance. Using ECC, however, no

coprocessor is required; or, using a much smaller set of hardware to handle ECC computations,

smart card transactions happen much faster.

One of the main inhibitors of smart card deployment has been expense; as compared with

magnetic-stripe cards, microprocessor chip cards are significantly more expensive. Magnetic

stripe cards cost between $.10-.50/card; microprocessor smart cards cost $1-3. Deployments are

taking place, but would certainly be accelerated by making smart cards less expensive. Because

ECC takes less chip real estate and less memory and can remove the need for a co-processor, lower

microprocessor costs can be gained by using ECC instead of RSA. The use of ECC could result in

increased use of smart-cards and foster improved services for consumers.

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY20

Revenue opportunities
There is additional revenue potential, too. ECC enables low bit rate and low power devices to

run securely; it enables systems to be implemented in low bandwidth situations. And it enables

services to be offered to constrained clients – small wireless devices, tiny sensors, clients with

limited battery or processing power. Using RSA, these systems are not possible.

One example is ZigBee, a developing standard for low bit rate, low power wireless devices for

consumer electronics, home and building automation, industrial control, PC peripherals, medical

sensors, toys and games. System requirements are:

 1. Provide 20 - 250 kbps connectivity,

2. Have very low power requirements,

3. Be less expensive than Bluetooth,

4. Provide a secure channel,

5. Small code size: 4KB - 30KB of RAM/ROM, versus over 250KB for Bluetooth

ZigBee chips are expected to quickly fall below $5/chip and as low as $1-2/chip. This leaves no

room for adding costly chip real estate or memory; the security must be as efficient as possible.

ECC is the natural choice: Modern cryptography to meet the needs of a modern system design. It

is the only choice to establish a secure channel within a system that requires a small footprint, low

power usage, and low bandwidth. Additionally, implementing ECC in a small hardware module as

part of an inexpensive ZigBee chip more clearly highlights the benefits.

Other factors
Beyond producing a useful product to generate revenues while maintaining expenses at a

minimum, other critical factors include:

• Compliance with industry standards: RSA is aging as a technology, and ECC is being introduced

into the major new standards initiatives.

• Government security requirements: The U.S. National Security Agency (NSA) has licensed ECC

for use in “critical security infrastructure”; it is the asymmetric algorithm that will be accepted

for future government use. If a product is being designed with the possibility of sale to the U.S.

government, it must be secured using ECC.

• Risk mitigation: ECC offers a clear upgrade path from RSA. As processing power increases in

devices, encryption key lengths will grow to provide adequate security. By designing ECC into

products now, a re-design will not be necessary for future versions.

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY21

IV. Summary

Embedded Market Forecasters began publishing and speaking publicly regarding its studies on

embedded security some 18 months ago – heralding embedded security as the next differentiator

for embedded applications. Because of the requirement of the U.S. Government - and its

relationship with NIST – for FIPS 140-2 compliance for any communicating technology sold to

the US government, an opportunity arose for embedded OEMs and vendors to grab a piece of this

lucrative market.

However, because many embedded devices are power, memory and CPU limited, it is clear that

there is a need for security implementations that are effective and are able to be implemented

while minimizing power drain, incremental memory requirement, and necessary CPU

cycles. Elliptic Curve Cryptography provides a compelling advantage in this regard over RSA

implementations that were originally intended for other applications.

As well, last year, the NSA adopted ECC for protecting mission critical information of the U.S.

government. This decision by the world’s leading codemakers and codebreakers not only validated

the strength of ECC, it created the opportunity for ECC to be widely adopted. It seems very

likely that other government agencies and the commercial sector will follow suit and adopt ECC

for strong security across a wide variety of applications and devices. Taking advantage of this

opportunity for significant new revenue streams should be enough of a financial incentive.

However, many developers point to the proliferation of RSA technology throughout the Internet as

the reason to stick with this legacy algorithm. While this made sense even 5 years ago, a number

of changes have happened in the security industry that point to ECC as the next generation of

public-key technology that will replace RSA.

The reason that RSA’s time has come and gone is that increases in processing power and advances

in cryptanalytic attacks mean legacy key sizes (1024-bit RSA) that provide only 80-bits of security

are just too weak for most industries. The simple solution would be to increase the key size to

3072-bit RSA to match the 128-bits of security provided by AES. However, as demonstrated in

section 3 this comes at a cost of 10x performance hit which only increases as we scale the key

sizes further. This is obviously a major issue with embedded designs.

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY22

It is now just a question of time for the technology to be adopted just as the transition from DES

to AES we witnessed recently. Developers should get ahead of the curve and build for the future

as there is no doubt that RSA keys will continue to grow and will become too large to meet system

needs. Each differential level increases performance and gate requirements, and the cost of

implementing RSA versus ECC continues to favor ECC disproportionately. In some cases, the larger

RSA key sizes just do not work which is why applications from Postal and Financial to Consumer

Electronics have adopted ECC as their public-key technique.

In other applications, there is strong rationale for adding ECC as an alternative to RSA until ECC’s

adoption is more widespread. This is a practical option as the cost to implement both is quite

small. Using the form of ECC mathematics based on prime numbers, like RSA, a cryptographic

processor can use the same logic circuits for both algorithms. When this is done, the additional

microprocessor gate count required to embed ECC in conjunction with RSA is approximately 10%.

A more efficient version that uses a different style of computational mathematics offers far better

performance improvement for systems that require the fastest or smallest security, and can start

fresh, without using RSA to interface to legacy security systems. This is the path to design for the

future and one that needs to be carefully considered by embedded developers.

Twenty years ago, ECC was still a new cryptosystem and researchers did not know if ECC schemes

could be implemented efficiently and securely. Since then, researchers have studied ECC and

determined it is a stronger, more efficient technology that is ideally suited for resource constrained

environments such as smart cards, cell phones, and personal digital assistants (PDAs). Moreover,

ECC systems are also well suited for applications that need long-term security requirements.

This paper has shown how ECC becomes particularly attractive when implementing the stronger

symmetric encryption offered by AES. These savings are even more advantageous when

computational power, bandwidth, or storage space are limited as is the case in the ever increasing

number of embedded systems that are being used everyday. ECC delivers the highest strength-per-

bit of any public-key cryptography system known today. Ultimately, the benefits of ECC are many:

linear scalability, a small software footprint, low hardware implementation costs, low bandwidth

requirements, high device performance.

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY23

APPENDIX
Review of Public/Private Key Encryption

Using Public Key Cryptography for Authentication

Diffie-Hellman Encryption
In 1976 the Diffie-Hellman (DH) key agreement protocol (also called exponential key agreement)

was developed by Diffie and Hellman and published in the ground breaking paper “New Directions

in Cryptography.” The protocol allows two users to exchange a secret key over an insecure medium

without any prior secrets.

The problem with the original DH implementation was that a man-in-the middle could intercept

the communications between two parties and pose as one of them or they could disrupt the

communications. In short, there was no effective method to authenticate the parties to the exchange.

Today, public key encryption using the original Diffie-Hellman protocol has been understood to

be an example of a much more general cryptographic technique, the common element being the

derivation of a shared secret value (that is, key) from one party’s public key and another party’s

private key. The parties’ key pairs may be generated anew at each run of the protocol, as in the

original Diffie-Hellman protocol. The public keys may be certified, so that the parties can be

authenticated.

Public Key Cryptography
Public key cryptography is a technique that uses a pair of keys for encryption and decryption and

for signature generation and verification. Each pair of keys consists of a public key and a private

key. The public key is made public by distributing it widely. The private key is never distributed; it

is always kept secret.

There are mathematical relationships between the public and the private key that make all of this

possible, the most important features of the pair are these: (1) you cannot derive the public key

from the private, (2) but you can, nonetheless with appropriate use of algebra, use the public key

to verify knowledge of the private key.

In public key signature schemes, these two properties are used as follows to verify identity:

the holder of a public key signs a message using the private key and the signature generation

algorithm.

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY24

The result—the message signature—can then be transmitted to anyone wishing to verify the identity

of the person sending the message. If, and only if, the message was genuinely generated by

someone with knowledge of the appropriate private key certain relationships between the public

key, the message and the signature can be verified—using a signature verification algorithm.

This feature relies ultimately on this unique relationship between the public and private keys. Note

again: the scheme allows someone with knowledge of the public key to verify knowledge of the

private key, but does not reveal the private key itself. So you can verify someone’s identity without

being able to impersonate them yourself—the essential and highly useful feature of asymmetric

cryptography.

Suppose Anne wants to authenticate Ben. Ben has a pair of keys, one public and one private. Ben

discloses to Anne his public key. Anne then generates a random message and sends it to Ben:

 A->B Random-message

Ben uses his private key to sign the message and returns the signature he generates to Anne:

 B->A {random-message}Bens-private-key

Anne receives this signature and verifies it against her message by using Ben’s previously

published public key. This verifies she’s talking to Ben. An imposter presumably wouldn’t know

Ben’s private key and would therefore be unable to properly sign the random message.

Handing Out Public Keys
How does Ben hand out his public key in a trustworthy way? Let’s say the authentication protocol

looks like this:

 A->B Hello

 B->A Hi, I’m Ben, Bens-public-key

 A->B prove it

 B->A Anne, This Is Ben

 { digest[Anne, This Is Ben] } Bens-private-key

With this protocol, anybody can be Ben. All you need is a public and private key. You lie to Anne

and say you are Ben, and then you provide your public key instead of Ben’s. Then you prove it by

encrypting something with the private key you have, and Anne can’t tell you’re not Ben.

To solve this problem, the standards community has developed an object called a certificate. A

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY25

certificate has the following content:

 • The certificate issuer’s name

 • The entity for whom the certificate is being issued (aka the subject)

 • The public key of the subject

 • Some time stamps

The certificate is signed using the certificate issuer’s private key. Everybody knows the certificate

issuer’s public key (that is, the certificate issuer has a certificate, and so on...). Certificates are a

standard way of binding a public key to a name.

By using this certificate technology, everybody can examine Ben’s certificate to see whether it’s

been forged. Assuming that Ben keeps tight control of his private key and that it really is Ben who

gets the certificate, then all is well. Here is the amended protocol:

 A->B Hello

 B->A Hi, I’m Ben, Bens-certificate

 A->B prove it

 B->A Anne, This Is Ben

 { digest[Anne, This Is Ben] } Bens-private-key

Now when Anne receives Ben’s first message, she can examine the certificate, check the signature

(as above, using a digest and public key decryption), and then check the subject (that is, Ben’s

name) and see that it is indeed Ben. She can then trust that the public key is Ben’s public key and

request Ben to prove his identity. Ben goes through the same process as before, making a message

digest of his design and then responding to Anne with a signed version of it. Anne can verify Ben’s

message digest by using the public key taken from the certificate and checking the result.

A bad guy – let’s call him Mike (in the middle) - can do the following:

 A->M Hello

 M->A Hi, I’m Ben, Bens-certificate

 A->M prove it

 M->A ????

But Mike can’t satisfy Anne in the final message. Mike doesn’t have Ben’s private key, so he can’t

construct a message that Anne will believe came from Ben.

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY26

Exchanging A Secret
Once Anne has authenticated Ben, she can do another thing - she can send Ben a message that

only Ben can decode:

 A->B {secret}Bens-public-key

The only way to find the secret is by decrypting the above message with Ben’s private key.

Exchanging a secret is another powerful way of using public key cryptography. Even if the

communication between Anne and Ben is being observed, nobody but Ben can get the secret.

This technique strengthens Internet security by using the secret as another key, but this time it’s

a key to a symmetric cryptographic algorithm (such as DES, RC4, or IDEA). Anne knows the secret

because she generated it before sending it to Ben. Ben knows the secret because Ben has the

private key and can decrypt Anne’s message. Because they both know the secret, they can both

initialize a symmetric cipher algorithm and then start sending messages encrypted with it.

How secret-key is computed is up to the protocol being defined, but it could simply be a copy of

secret.

Authentication with Asymmetric Cryptography
In the case of asymmetric authentication methods — the core technology behind digital signatures

and certificates — we normally speak of a private key (in the possession of the entity wishing to

prove its identity) and the public key (in the possession of anyone who wishes to verify the identity

of the entity possessing the private key).

You may, with the public key, verify that an entity has knowledge of the private key — but

you cannot derive the private key from the public. This is the critical feature of asymmetric

cryptographic schemes that makes them so useful.

This property is useful for a number of things: it greatly simplifies key exchange, as one example,

and it solves one critical problem symmetric cryptography cannot solve — the problem of

guaranteeing unique authentication and non-repudiation.

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY27

I’m not sure why hashing is described as “symmetric”. A hash function has no keys.

Hashing and authentication methods — ones for which there is only one key, and both parties

in the exchange use it both for authentication and for signature generation — have the distinct

disadvantage that they do not, on their own, offer any way to distinguish which party to the

exchange signed a given message. If both or all parties must know the key, based on cryptography

alone, you cannot distinguish which signed any given message. Any of them could have. In

asymmetric authentication schemes, only one party knows the private key, with which the

message is signed. Any number may know the public key. Since the private key cannot be derived

from the public, the signature serves as a unique identifier. If the message verifies as having

been signed by the person with knowledge of the private key, we can narrow down who sent the

message to one.

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY28

About Embedded Market Forecasters
The premier market intelligence and advisory firm in the embedded technology industry,
Embedded Market Forecasters (EMF) is the embedded market research division of American
Technology International, Inc. We specialize in providing high-quality data and expert analysis to
support our clients’ ability to assess the opportunities, risks, and competitive issues involved with
developing and deploying embedded technologies. EMF has extensive experience providing both
multi-client and custom research on topics including embedded boards, buses, software, hardware
and development tools markets as well as embedded technology applications including embedded
systems, digital signal processors (DSPs), FPGAs, single board computers, communications/IT, and
multimedia. Our clients range from startups to Global 100 companies worldwide. Founded by Dr.
Jerry Krasner, a recognized authority on embedded markets, product development and channel

distribution, EMF is headquartered in Framingham, Mass.

About Certicom
Certicom Corp. (TSX: CIC) is the authority for strong, efficient cryptography required by
software vendors and device manufacturers to embed security in their products. Adopted by
the US Government’s National Security Agency (NSA), Certicom technologies for Elliptic Curve
Cryptography (ECC) provide the most security per bit of any known public key scheme, making
it ideal for constrained environments. Certicom products and services are currently licensed to
more than 300 customers including Motorola, Oracle, Research In Motion, Terayon, and Texas
Instruments. Founded in 1985, Certicom is headquartered in Mississauga, ON, Canada, with offices
in Ottawa, ON; Reston, VA; San Mateo, CA; and London, England.

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY29

Certicom White Papers
To read other Certicom white papers, visit www.certicom.com/whitepapers.

The Inside Story

Many Happy Returns: The ROI of Embedded Security

Wireless Security Inside Out (authored by Texas Instruments and Certicom)

Welcome to the Real World

Sum Total: Determining the True Cost of Security

Current Public-Key Cryptographic Systems

The Elliptic Curve Cryptosystem for Smart Cards

Elliptic Curve DSA (ECDSA): An Enhanced DSA

Formal Security Proofs for a Signature Scheme with Partial Message Recovery

Postal Revenue Collection in the Digital Age

An Elliptic Curve Cryptography Primer

Good Things Come in Space Packages: An Overview of the Certicom Security Architecture

USING ELLIPTIC CURVE CRYPTOGRAPHY (ECC) FOR ENHANCED EMBEDDED SECURITY30

Contact Certicom

Corporate Headquarters
5520 Explorer Drive

Mississauga, Ontario

L4W 5L1

Tel: +1-905-507-4220

Fax: +1-905-507-4230

E-mail: info@certicom.com

Sales Offices
Canada
5520 Explorer Drive

Mississauga, Ontario

L4W 5L1

Tel: 905-507-4220

Fax: 905-507-4230

E-mail: info@certicom.com

Ottawa
84 Hines Road

Ottawa, Ontario

K2K 3G3

Tel: 613-254-9270

Fax: 613-254-9275

U.S. Western Regional Office
1810 Gateway Drive, Suite 220

San Mateo, CA 94404

Tel: 650-655-3950

Fax: 650-655-3951

E-mail: sales@certicom.com

U.S. Eastern Regional Office
1800 Alexander Bell Dr., Suite 400

Herndon, Virginia 20190

Tel: 703-234-2357

Fax: 703-234-2356

E-mail: sales@certicom.com

Europe
Golden Cross House

8 Duncannon Street

London WC2N 4JF UK

Tel: +44 20 7484 5025

Fax: +44 (0)870 7606778

www.certicom.com

Contact Embedded Market Forecasters

info@embeddedforecast.com
www.embedded-forecast.com

